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Summary of day 1

 Well-defined intervention 

 Static vs. dynamic interventions

 Definition of an average causal effect

 Why is randomization important?

 Conditional exchangeability assumption to identify a 
causal effect 

 When standard adjustment methods fail

 IP weights for treatment



Formulation of a well-defined study question

 Well-defined causal inference questions can be mapped 
into a target trial

 Specify the protocol of the target trial including:
 Eligibility criteria
 Treatment strategies
 Randomized treatment assignment
 Follow-up period
 Outcome
 Causal contrast of interest
 Analysis Plan

Hernan, Robins Am J Epidemiol. 2016;183(8):758–764



Classification of sustained treatment strategies

 Static
 a fixed strategy for everyone
 Example: treat with 150mg of daily aspirin during 5 

years
 Case example: initiate HAART

 Dynamic
 a strategy that assigns different values to different 

individuals as a function of their evolving 
characteristics

 Example: start aspirin treatment if coronary heart 
disease, stop if stroke

 Case example: initiate HAART if CD4 drops below 500 
cells/mm3



Definition of an average causal effect

l

 Each person has two counterfactual outcomes:
 Outcome Y if treated - Yi, a=1

 Outcome Y if untreated – Yi, a=0

 Individual causal effect:
 Yi, a=1  ≠ Yi, a=0

 Cannot be determined except under extremely strong 
assumptions

 Average (population) causal effect:
 E[Ya=1 = 1] ≠ E[Ya=0 = 1] 
 Can be estimated under:

 No assumptions (ideal randomized experiments)
 Strong assumptions (observational studies)



Why is randomization important?

 When group membership is randomly assigned, risks are 
the same

 Both groups are comparable or exchangeable

 Exchangeability is the consequence of randomization 



 Within levels of the covariates, L, exposed subjects would 
have had the same risk as unexposed subjects had they 
been unexposed, and vice versa

 Counterfactual risk is the same in the exposed and the 
unexposed with the same level of L

 Pr[Ya=1|A=1, L=l] = Pr[Ya=1|A=0, L=l]        A     Ya|L=l
Ya A|L=l

 Equivalent to randomization within levels of L

 Implies no unmeasured (residual) confounding within 
levels of the measured covariates L

Conditional exchangeability 






Methods to compute causal effects

 Stratification

 Regression

 Matching

 Standardization

 Inverse probability weighting

ALL assuming conditional exchangeability



Choice of method depends on type of strategies

 Comparison of strategies involving point interventions 
only
 All methods work 
 if all baseline confounders are measured 

 Comparison of sustained strategies
 Generally only causal inference methods work
 Time-varying treatments imply time-varying 

confounders
 possible treatment-confounder feedback

 Conventional methods may introduce bias even when 
sufficient data are available on time-varying 
treatments and time-varying confounders



Problem with stratified analytic approach

L0 A0 L1 A1 Y1

U 

 Interested in the cumulative effect of treatment.
 L1 is a confounder for the treatment A1 – if don’t adjust for it then treatment 
effect is confounded. Also could induce selection bias (collider). 
 L1 is affected by A0 – if adjust for L1 then losing some of the effect of A0. 



Stabilized inverse probability of treatment weights

 Numerator: The probability that the subject received 
his/her observed treatment at week k, conditional on 
past treatment history and baseline covariates.

 Denominator: The probability that the subject received 
his/her own observed treatment at week k, given past 
treatment history and covariate history (baseline and 
time-dependent).



Directed Acyclic Graph in pseudopopulation with SW

V A0 L1 A1 Y

U



Estimating IPW and fitting the MSM

 Estimate SW for both treatment and censoring:
 Fit logistic regression models for treatment and censoring
 Use predicted values from the models to calculate stabilized 

weights

 Estimate the IPW estimate of HAART on mortality:
 Fit weighted pooled logistic model using the estimated 

stabilized weights. 
 Use “robust” variance estimators (GEE) to allow for 

correlated observations created by weighting –
conservative 95% CI.





Case study



Introduction/background

 The use of antiretroviral drugs (ARVs) during pregnancy 
has dramatically decreased the incidence of perinatal 
transmission of HIV

 The effects of in utero exposure to ARVs on 
neurodevelopment in perinatally HIV-exposed but 
uninfected (PHEU) infants requires further study

 Previous research evaluating developmental outcomes 
in PHEU infants identified atazanavir as a safety concern

 A comparative safety study was needed to confirm 
these findings



Objective

 To evaluate the effect of in utero exposure to ARV 
regimens containing atazanavir compared to non-
atazanavir-containing regimens on neurodevelopment 
at 9-15 months of age

 using observational data from a cohort of PHEU 
infants

 with a comparative safety design 



Study population

 SMARTT protocol of PHACS

 Pregnant women living with HIV enrolled in the dynamic 
cohort

 Not on ARVs at their last antepartum menstrual 
period
 Initiated ARVs during pregnancy

 Excluded sites in Puerto Rico

 Excluded if infant less than 15 months of age by July 1, 
2014



Exposure ascertainment



Outcome ascertainment

 Bayley Scales of Infant and Toddler Development – Third 
Edition (Bayley-III)
 Administered at 9-15 months of age
 Only available in English
 Provides 5 scores:
 Cognitive
 Language
 Motor
 Social-emotional
 General adaptive



Secondary outcomes

 Neonatal outcomes 
 Low birth weight (≤2500 grams)
 Gestational age
 Prematurity (gestational age <37 weeks)
 Neonatal hearing

 Head circumference z-scores at 9-18 months



Analysis

 Conducted separately for each of the five Bayley-III 
domains

 Multivariable adjusted linear regression models
 To estimate the mean difference in each domain score 

comparing atazanavir-containing to non-atazanavir-
containing regimens

 Estimated separately by trimester of ARV initiation
 Adjusted for baseline maternal characteristics

 maternal education, CD4 cell count, HIV RNA, calendar 
year, race, ethnicity, language spoken at home, income, 
age, maternal Full Scale Intelligence Quotient, and 
maternal illicit substance, alcohol, and tobacco use

l



Missing outcome data

 ~40% had incomplete or invalid results for one or more 
Bayley-III domains

l



Options for analysis

 Analyze observed non-missing outcome data
 Any problems with this approach?



Selection bias

 Bias that arises when the parameter of interest in a 
population differs from the parameter in the subset of 
individuals from the population that are available for 
analysis

 Selection bias for descriptive measures (e.g., 
prevalence) because of non-random sampling

 Selection bias for effect measures (e.g., causal risk 
ratio) because of differential loss to follow-up



Selection bias for effect measures

 Differential loss to follow-up/censoring

 Missing outcome/Non-response

 Healthy worker bias

 Self-selection/volunteer bias



Structure of selection bias (under the null)

 Bias arises as the consequence of conditioning on a 
common effect of treatment and outcome
 Or on a common effect of a cause of the treatment and a 

cause of the outcome

 That is, the design or the analysis is conditioned on “being 
selected for analysis” C=0



Is bias due to differential loss to follow-up possible in 
randomized experiments?

 Yes?

 No?



Aside: Is bias due to self-selection possible in 
randomized experiments?

 Yes?

 No?



Aside: Internal vs. external validity in randomized 
experiments

 Internal validity
 the estimated association has a causal interpretation in the 

studied population
 i.e., no selection bias, no confounding

 External validity
 the estimated association has a causal interpretation in 

another population
 i.e., generalized or transportability

 In randomized experiments
 There is internal validity
 Perhaps not external validity



Simplified case example

 HIV-exposed uninfected infants

 Variables:
 A=1: In utero exposure to ATV
 L=1: Low maternal CD4 count at delivery
 C=1: Missing 1-year Bayley exam
 Y=1: Neurocognitive deficit

 Treatment status randomized
 No confounding

 Under the null: No effect of in utero ATV exposure and 
neurocognitive function



Case example: Directed Acyclic Graph

 Where:
 L: Maternal CD4 count at delivery
 A: Maternal exposure to ATV
 C: Censored
 Y: Neurocognitive deficit in infant at 1 year
 U: Unmeasured covariate – Maternal underlying immune 

function



Problem with stratified approach to adjust for 
censoring?

 Conditioning on descendent of a common effect (collider)
 Only including those with C=0 in analyses (non-missing data)

 Observe biased association between A and Y through        
A → L ← U → Y



Alternative structure of selection bias due to differential 
loss to follow-up/non-response or missing data

 Where:
 L: Smoking intensity at baseline
 A: Smoking cessation
 C: Censored
 Y: Weight gain
 U: Lifetime history of smoking

 Stratified approach will not cause bias if measure and 
adjust for L



Approaches for adjustment for selection bias

 Stratification

 Regression

 Inverse probability weighting

Approach depends on the structure of selection bias



Simplified case example original data

 Among A=0: No in utero exposure to ATV
 L=1: Low maternal CD4 count at delivery
 C=1: Missing 1-year Bayley exam
 Y=1: Neurocognitive deficit



Case example pseudopopulation

 Among A=0: No in utero exposure to ATV
 L=1: Low maternal CD4 count at delivery
 C=1: Missing 1-year Bayley exam
 Y=1: Neurocognitive deficit

W=1/Pr[C=0/A,L]

1/0.5=2

1/0.5=2

1/0.1=10

1/0.1=10



Directed Acyclic Graph in pseudopopulation



What is an assumption are we making?

 Conditional exchangeability 

 Average outcome in the uncensored participants is 
the same as the average outcome in the censored 
participants with the same values of A and L

 Or selection is randomized within levels of A,L



Use of models for IPW

 Reality is we deal with high-dimensional data with 
multiple covariates (Ls), some with multiple levels
 Cannot obtain meaningful non-parametric estimates of the 

weights 
 Model the probability of being uncensored with Ls (and A) 

as the covariates

 Some individuals may contribute a really high weight due 
to their a relatively small probability of being uncensored 
given their exposure and covariate history
 Stabilize the weights by using the probability of being 

uncensored given treatment and baseline covariates in the 
numerator

 Apply stabilized weights (SW) to estimate the parameters of 
a marginal structural model
 reduce variance in model for the outcome



Stabilized inverse probability of censoring weights

 Numerator: The probability that the subject was 
uncensored at week k, conditional on past treatment 
history and baseline covariates.

 Denominator: The probability that the subject was 
uncensored at week k, given past treatment history and 
covariate history (baseline and time-dependent).

Pr {C(k)=0/Ᾱ(k),V}

Pr {C(k)=0/Ᾱ(k), L(k)}



Estimating IPW and fitting the MSM

 Estimate SW for censoring:
 Fit logistic regression models for being uncensored
 Use predicted values from the models to calculate stabilized 

weights

 Estimate the IPW estimate of in utero ATV exposure on 
neurocognitive scores at 1-year:
 Fit weighted linear regression models using the estimated 

stabilized weights. 
 Use “robust” variance estimators (GEE) to allow for 

correlated observations created by weighting –
conservative 95% CI.



Summary: IP weights

 To adjust for confounding
 Use IP weights for treatment – IPTW

 To adjust for selection bias
 Use IP weights for censoring – IPCW

 To adjust for both biases
 Multiply IPTW x IPCW



Case Example: Predictors of Censoring

 Baseline covariates: maternal education, CD4 cell count, 
HIV RNA, calendar year, race, ethnicity, language 
spoken at home, income, age, maternal Full Scale 
Intelligence Quotient, and maternal illicit substance, 
alcohol, and tobacco use

 Post-baseline covariates: mother’s last CD4 in pregnancy, 
positive test for STI in pregnancy, infant low birth weight, 
and gestational age at delivery



Primary effect estimates of interest 

 Effect of in utero ATV exposure during the 1st trimester on 
the following Bayley scores:

 Cognitive
 Language
 Motor
 Social-emotional
 General adaptive

 Effect of in utero ATV exposure during the 2nd/3rd trimester 
on the following Bayley scores:

 Cognitive
 Language
 Motor
 Social-emotional
 General adaptive



Results



Characteristics of Study Population

Atazanavir-containing regimen
(n=167)

Non-atazanavir-containing
regimen
(n=750)

Results



Characteristics of Study Population

Characteristic Atazanavir-
containing regimen

(n=167)

Non-atazanavir-
containing regimen

(n=750)
ARV initiation

First trimester 55 (33%) 227 (30%)

Second or third 
trimester

112  (67%) 523 (70%)

Results



Characteristics of Study Population

Characteristic Atazanavir-
containing regimen

(n=167)

Non-atazanavir-
containing regimen

(n=750)
ARV initiation

First trimester 55 (33%) 227 (30%)

Second or third 
trimester

112  (67%) 523 (70%)

Age older
(mean 29 years)

younger
(mean 27 years)

Cognitive scores lower
(mean 84.3)

higher
(mean 86.5)

Initiate ARVs 2011-
2014

more likely 
(40%)

less likely
(26%)

Results



Common Regimens

Number of 
initiators

Type of regimen

Atazanavir-containing 
regimens

Atazanavir, emtricitabine,
tenofovir, ritonavir 126 (75%) Boosted PI with 2 NRTIs

Non-atazanavir-containing 
regimens

Lopinavir, zidovudine, 
lamivudine, ritonavir 335 (45%) Boosted PI with 2 NRTIs

Zidovudine, lamivudine, 
abacavir 134 (18%) 3 NRTIs

Results



Bayley-III  - First Trimester 

Domain No. of 
infants

Adjusted mean difference (95% CI)
comparing atazanavir regimens with 

non-atazanavir regimens
Cognitive 182 -1.50 (-6.20, 3.20)

Language 182 -3.30 (-7.64, 1.04)

Motor 181 -2.92 (-7.75, 1.90)

Social-
Emotional

173 0.14 (-6.16, 6.43)

Adaptive 
Behavior

173 -0.13 (-4.31, 4.05)

Results



Bayley-III  - Second/Third Trimester 

Domain No. of 
infants

Adjusted mean difference (95% CI)
comparing atazanavir regimens with 

non-atazanavir regimens
Cognitive 383 0.39 (-3.19, 3.96)
Language 379 -3.37 (-6.23, -0.51)

Motor 376 0.27 (-2.88, 3.41)
Social-

Emotional
374 -5.86 (-9.44, -2.28)

Adaptive 
Behavior

380 -2.53 (-5.86, 0.80)

Results



Secondary Outcomes

Results

Outcome No. of 
infants

No. of 
outco
mes

Adjusted mean difference (95% CI)
comparing atazanavir regimens with 

non-atazanavir regimens

Head 
circumference 

z-score

652 -- -0.45 (-0.66, -0.24)

Gestational age 
(weeks)

906 --
0.00 (-0.35, 0.36)

Adjusted risk ratio (95% CI)
Hearing screen 

referral
898 31 1.21 (0.53, 2.80)

Low birth weight 911 163
1.06 (0.73, 1.53)

Prematurity (<37
weeks)

911 161 1.00 (0.68, 1.48) 



Conclusions



Conclusions (1)

Conclusions

 Atazanavir-containing regimens may lower infants’ 
performance on the Language domain of the Bayley-III 
by about 3.4 points, regardless of trimester of initiation

 Atazanavir-containing regimens may lower infants’ 
performance on the Social-Emotional domain by 5.9 
points, when initiated in the second/third trimester



Conclusions (2)

Conclusions

 The lack of an estimated effect of initiation of atazanavir
in the first trimester on social-emotional development 
may be explained by a high proportion of women who 
switched to another ARV regimen later in pregnancy



Conclusions (3)

Conclusions

 Atazanavir could affect neurodevelopment via 
hyperbilirubinemia

 Clinical implications may be small, but future work should 
evaluate whether the differences observed in this study 
persist over time
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